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Summary of day 1

 Well-defined intervention 

 Static vs. dynamic interventions

 Definition of an average causal effect

 Why is randomization important?

 Conditional exchangeability assumption to identify a 
causal effect 

 When standard adjustment methods fail

 IP weights for treatment



Formulation of a well-defined study question

 Well-defined causal inference questions can be mapped 
into a target trial

 Specify the protocol of the target trial including:
 Eligibility criteria
 Treatment strategies
 Randomized treatment assignment
 Follow-up period
 Outcome
 Causal contrast of interest
 Analysis Plan

Hernan, Robins Am J Epidemiol. 2016;183(8):758–764



Classification of sustained treatment strategies

 Static
 a fixed strategy for everyone
 Example: treat with 150mg of daily aspirin during 5 

years
 Case example: initiate HAART

 Dynamic
 a strategy that assigns different values to different 

individuals as a function of their evolving 
characteristics

 Example: start aspirin treatment if coronary heart 
disease, stop if stroke

 Case example: initiate HAART if CD4 drops below 500 
cells/mm3



Definition of an average causal effect

l

 Each person has two counterfactual outcomes:
 Outcome Y if treated - Yi, a=1

 Outcome Y if untreated – Yi, a=0

 Individual causal effect:
 Yi, a=1  ≠ Yi, a=0

 Cannot be determined except under extremely strong 
assumptions

 Average (population) causal effect:
 E[Ya=1 = 1] ≠ E[Ya=0 = 1] 
 Can be estimated under:

 No assumptions (ideal randomized experiments)
 Strong assumptions (observational studies)



Why is randomization important?

 When group membership is randomly assigned, risks are 
the same

 Both groups are comparable or exchangeable

 Exchangeability is the consequence of randomization 



 Within levels of the covariates, L, exposed subjects would 
have had the same risk as unexposed subjects had they 
been unexposed, and vice versa

 Counterfactual risk is the same in the exposed and the 
unexposed with the same level of L

 Pr[Ya=1|A=1, L=l] = Pr[Ya=1|A=0, L=l]        A     Ya|L=l
Ya A|L=l

 Equivalent to randomization within levels of L

 Implies no unmeasured (residual) confounding within 
levels of the measured covariates L

Conditional exchangeability 






Methods to compute causal effects

 Stratification

 Regression

 Matching

 Standardization

 Inverse probability weighting

ALL assuming conditional exchangeability



Choice of method depends on type of strategies

 Comparison of strategies involving point interventions 
only
 All methods work 
 if all baseline confounders are measured 

 Comparison of sustained strategies
 Generally only causal inference methods work
 Time-varying treatments imply time-varying 

confounders
 possible treatment-confounder feedback

 Conventional methods may introduce bias even when 
sufficient data are available on time-varying 
treatments and time-varying confounders



Problem with stratified analytic approach

L0 A0 L1 A1 Y1

U 

 Interested in the cumulative effect of treatment.
 L1 is a confounder for the treatment A1 – if don’t adjust for it then treatment 
effect is confounded. Also could induce selection bias (collider). 
 L1 is affected by A0 – if adjust for L1 then losing some of the effect of A0. 



Stabilized inverse probability of treatment weights

 Numerator: The probability that the subject received 
his/her observed treatment at week k, conditional on 
past treatment history and baseline covariates.

 Denominator: The probability that the subject received 
his/her own observed treatment at week k, given past 
treatment history and covariate history (baseline and 
time-dependent).



Directed Acyclic Graph in pseudopopulation with SW

V A0 L1 A1 Y

U



Estimating IPW and fitting the MSM

 Estimate SW for both treatment and censoring:
 Fit logistic regression models for treatment and censoring
 Use predicted values from the models to calculate stabilized 

weights

 Estimate the IPW estimate of HAART on mortality:
 Fit weighted pooled logistic model using the estimated 

stabilized weights. 
 Use “robust” variance estimators (GEE) to allow for 

correlated observations created by weighting –
conservative 95% CI.





Case study



Introduction/background

 The use of antiretroviral drugs (ARVs) during pregnancy 
has dramatically decreased the incidence of perinatal 
transmission of HIV

 The effects of in utero exposure to ARVs on 
neurodevelopment in perinatally HIV-exposed but 
uninfected (PHEU) infants requires further study

 Previous research evaluating developmental outcomes 
in PHEU infants identified atazanavir as a safety concern

 A comparative safety study was needed to confirm 
these findings



Objective

 To evaluate the effect of in utero exposure to ARV 
regimens containing atazanavir compared to non-
atazanavir-containing regimens on neurodevelopment 
at 9-15 months of age

 using observational data from a cohort of PHEU 
infants

 with a comparative safety design 



Study population

 SMARTT protocol of PHACS

 Pregnant women living with HIV enrolled in the dynamic 
cohort

 Not on ARVs at their last antepartum menstrual 
period
 Initiated ARVs during pregnancy

 Excluded sites in Puerto Rico

 Excluded if infant less than 15 months of age by July 1, 
2014



Exposure ascertainment



Outcome ascertainment

 Bayley Scales of Infant and Toddler Development – Third 
Edition (Bayley-III)
 Administered at 9-15 months of age
 Only available in English
 Provides 5 scores:
 Cognitive
 Language
 Motor
 Social-emotional
 General adaptive



Secondary outcomes

 Neonatal outcomes 
 Low birth weight (≤2500 grams)
 Gestational age
 Prematurity (gestational age <37 weeks)
 Neonatal hearing

 Head circumference z-scores at 9-18 months



Analysis

 Conducted separately for each of the five Bayley-III 
domains

 Multivariable adjusted linear regression models
 To estimate the mean difference in each domain score 

comparing atazanavir-containing to non-atazanavir-
containing regimens

 Estimated separately by trimester of ARV initiation
 Adjusted for baseline maternal characteristics

 maternal education, CD4 cell count, HIV RNA, calendar 
year, race, ethnicity, language spoken at home, income, 
age, maternal Full Scale Intelligence Quotient, and 
maternal illicit substance, alcohol, and tobacco use

l



Missing outcome data

 ~40% had incomplete or invalid results for one or more 
Bayley-III domains

l



Options for analysis

 Analyze observed non-missing outcome data
 Any problems with this approach?



Selection bias

 Bias that arises when the parameter of interest in a 
population differs from the parameter in the subset of 
individuals from the population that are available for 
analysis

 Selection bias for descriptive measures (e.g., 
prevalence) because of non-random sampling

 Selection bias for effect measures (e.g., causal risk 
ratio) because of differential loss to follow-up



Selection bias for effect measures

 Differential loss to follow-up/censoring

 Missing outcome/Non-response

 Healthy worker bias

 Self-selection/volunteer bias



Structure of selection bias (under the null)

 Bias arises as the consequence of conditioning on a 
common effect of treatment and outcome
 Or on a common effect of a cause of the treatment and a 

cause of the outcome

 That is, the design or the analysis is conditioned on “being 
selected for analysis” C=0



Is bias due to differential loss to follow-up possible in 
randomized experiments?

 Yes?

 No?



Aside: Is bias due to self-selection possible in 
randomized experiments?

 Yes?

 No?



Aside: Internal vs. external validity in randomized 
experiments

 Internal validity
 the estimated association has a causal interpretation in the 

studied population
 i.e., no selection bias, no confounding

 External validity
 the estimated association has a causal interpretation in 

another population
 i.e., generalized or transportability

 In randomized experiments
 There is internal validity
 Perhaps not external validity



Simplified case example

 HIV-exposed uninfected infants

 Variables:
 A=1: In utero exposure to ATV
 L=1: Low maternal CD4 count at delivery
 C=1: Missing 1-year Bayley exam
 Y=1: Neurocognitive deficit

 Treatment status randomized
 No confounding

 Under the null: No effect of in utero ATV exposure and 
neurocognitive function



Case example: Directed Acyclic Graph

 Where:
 L: Maternal CD4 count at delivery
 A: Maternal exposure to ATV
 C: Censored
 Y: Neurocognitive deficit in infant at 1 year
 U: Unmeasured covariate – Maternal underlying immune 

function



Problem with stratified approach to adjust for 
censoring?

 Conditioning on descendent of a common effect (collider)
 Only including those with C=0 in analyses (non-missing data)

 Observe biased association between A and Y through        
A → L ← U → Y



Alternative structure of selection bias due to differential 
loss to follow-up/non-response or missing data

 Where:
 L: Smoking intensity at baseline
 A: Smoking cessation
 C: Censored
 Y: Weight gain
 U: Lifetime history of smoking

 Stratified approach will not cause bias if measure and 
adjust for L



Approaches for adjustment for selection bias

 Stratification

 Regression

 Inverse probability weighting

Approach depends on the structure of selection bias



Simplified case example original data

 Among A=0: No in utero exposure to ATV
 L=1: Low maternal CD4 count at delivery
 C=1: Missing 1-year Bayley exam
 Y=1: Neurocognitive deficit



Case example pseudopopulation

 Among A=0: No in utero exposure to ATV
 L=1: Low maternal CD4 count at delivery
 C=1: Missing 1-year Bayley exam
 Y=1: Neurocognitive deficit

W=1/Pr[C=0/A,L]

1/0.5=2

1/0.5=2

1/0.1=10

1/0.1=10



Directed Acyclic Graph in pseudopopulation



What is an assumption are we making?

 Conditional exchangeability 

 Average outcome in the uncensored participants is 
the same as the average outcome in the censored 
participants with the same values of A and L

 Or selection is randomized within levels of A,L



Use of models for IPW

 Reality is we deal with high-dimensional data with 
multiple covariates (Ls), some with multiple levels
 Cannot obtain meaningful non-parametric estimates of the 

weights 
 Model the probability of being uncensored with Ls (and A) 

as the covariates

 Some individuals may contribute a really high weight due 
to their a relatively small probability of being uncensored 
given their exposure and covariate history
 Stabilize the weights by using the probability of being 

uncensored given treatment and baseline covariates in the 
numerator

 Apply stabilized weights (SW) to estimate the parameters of 
a marginal structural model
 reduce variance in model for the outcome



Stabilized inverse probability of censoring weights

 Numerator: The probability that the subject was 
uncensored at week k, conditional on past treatment 
history and baseline covariates.

 Denominator: The probability that the subject was 
uncensored at week k, given past treatment history and 
covariate history (baseline and time-dependent).

Pr {C(k)=0/Ᾱ(k),V}

Pr {C(k)=0/Ᾱ(k), L(k)}



Estimating IPW and fitting the MSM

 Estimate SW for censoring:
 Fit logistic regression models for being uncensored
 Use predicted values from the models to calculate stabilized 

weights

 Estimate the IPW estimate of in utero ATV exposure on 
neurocognitive scores at 1-year:
 Fit weighted linear regression models using the estimated 

stabilized weights. 
 Use “robust” variance estimators (GEE) to allow for 

correlated observations created by weighting –
conservative 95% CI.



Summary: IP weights

 To adjust for confounding
 Use IP weights for treatment – IPTW

 To adjust for selection bias
 Use IP weights for censoring – IPCW

 To adjust for both biases
 Multiply IPTW x IPCW



Case Example: Predictors of Censoring

 Baseline covariates: maternal education, CD4 cell count, 
HIV RNA, calendar year, race, ethnicity, language 
spoken at home, income, age, maternal Full Scale 
Intelligence Quotient, and maternal illicit substance, 
alcohol, and tobacco use

 Post-baseline covariates: mother’s last CD4 in pregnancy, 
positive test for STI in pregnancy, infant low birth weight, 
and gestational age at delivery



Primary effect estimates of interest 

 Effect of in utero ATV exposure during the 1st trimester on 
the following Bayley scores:

 Cognitive
 Language
 Motor
 Social-emotional
 General adaptive

 Effect of in utero ATV exposure during the 2nd/3rd trimester 
on the following Bayley scores:

 Cognitive
 Language
 Motor
 Social-emotional
 General adaptive



Results



Characteristics of Study Population

Atazanavir-containing regimen
(n=167)

Non-atazanavir-containing
regimen
(n=750)

Results



Characteristics of Study Population

Characteristic Atazanavir-
containing regimen

(n=167)

Non-atazanavir-
containing regimen

(n=750)
ARV initiation

First trimester 55 (33%) 227 (30%)

Second or third 
trimester

112  (67%) 523 (70%)

Results



Characteristics of Study Population

Characteristic Atazanavir-
containing regimen

(n=167)

Non-atazanavir-
containing regimen

(n=750)
ARV initiation

First trimester 55 (33%) 227 (30%)

Second or third 
trimester

112  (67%) 523 (70%)

Age older
(mean 29 years)

younger
(mean 27 years)

Cognitive scores lower
(mean 84.3)

higher
(mean 86.5)

Initiate ARVs 2011-
2014

more likely 
(40%)

less likely
(26%)

Results



Common Regimens

Number of 
initiators

Type of regimen

Atazanavir-containing 
regimens

Atazanavir, emtricitabine,
tenofovir, ritonavir 126 (75%) Boosted PI with 2 NRTIs

Non-atazanavir-containing 
regimens

Lopinavir, zidovudine, 
lamivudine, ritonavir 335 (45%) Boosted PI with 2 NRTIs

Zidovudine, lamivudine, 
abacavir 134 (18%) 3 NRTIs

Results



Bayley-III  - First Trimester 

Domain No. of 
infants

Adjusted mean difference (95% CI)
comparing atazanavir regimens with 

non-atazanavir regimens
Cognitive 182 -1.50 (-6.20, 3.20)

Language 182 -3.30 (-7.64, 1.04)

Motor 181 -2.92 (-7.75, 1.90)

Social-
Emotional

173 0.14 (-6.16, 6.43)

Adaptive 
Behavior

173 -0.13 (-4.31, 4.05)

Results



Bayley-III  - Second/Third Trimester 

Domain No. of 
infants

Adjusted mean difference (95% CI)
comparing atazanavir regimens with 

non-atazanavir regimens
Cognitive 383 0.39 (-3.19, 3.96)
Language 379 -3.37 (-6.23, -0.51)

Motor 376 0.27 (-2.88, 3.41)
Social-

Emotional
374 -5.86 (-9.44, -2.28)

Adaptive 
Behavior

380 -2.53 (-5.86, 0.80)

Results



Secondary Outcomes

Results

Outcome No. of 
infants

No. of 
outco
mes

Adjusted mean difference (95% CI)
comparing atazanavir regimens with 

non-atazanavir regimens

Head 
circumference 

z-score

652 -- -0.45 (-0.66, -0.24)

Gestational age 
(weeks)

906 --
0.00 (-0.35, 0.36)

Adjusted risk ratio (95% CI)
Hearing screen 

referral
898 31 1.21 (0.53, 2.80)

Low birth weight 911 163
1.06 (0.73, 1.53)

Prematurity (<37
weeks)

911 161 1.00 (0.68, 1.48) 



Conclusions



Conclusions (1)

Conclusions

 Atazanavir-containing regimens may lower infants’ 
performance on the Language domain of the Bayley-III 
by about 3.4 points, regardless of trimester of initiation

 Atazanavir-containing regimens may lower infants’ 
performance on the Social-Emotional domain by 5.9 
points, when initiated in the second/third trimester



Conclusions (2)

Conclusions

 The lack of an estimated effect of initiation of atazanavir
in the first trimester on social-emotional development 
may be explained by a high proportion of women who 
switched to another ARV regimen later in pregnancy



Conclusions (3)

Conclusions

 Atazanavir could affect neurodevelopment via 
hyperbilirubinemia

 Clinical implications may be small, but future work should 
evaluate whether the differences observed in this study 
persist over time
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